R/LearnerParam.R
, R/makeLearnerParamFuns.R
LearnerParam.Rd
This specializes Param()
by adding a few more attributes, like
a default value, whether it refers to a training or a predict function, etc.
Note that you can set length
to NA
The S3 class is a Param()
which additionally stores these elements:
character(1)
See argument of same name.
See the note in Param()
about being able to pass expressions to certain arguments.
makeNumericLearnerParam( id, lower = -Inf, upper = Inf, allow.inf = FALSE, default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() ) makeNumericVectorLearnerParam( id, len = as.integer(NA), lower = -Inf, upper = Inf, allow.inf = FALSE, default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() ) makeIntegerLearnerParam( id, lower = -Inf, upper = Inf, default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() ) makeIntegerVectorLearnerParam( id, len = as.integer(NA), lower = -Inf, upper = Inf, default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() ) makeDiscreteLearnerParam( id, values, default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() ) makeDiscreteVectorLearnerParam( id, len = as.integer(NA), values, default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() ) makeLogicalLearnerParam( id, default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() ) makeLogicalVectorLearnerParam( id, len = as.integer(NA), default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() ) makeUntypedLearnerParam( id, default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() ) makeFunctionLearnerParam( id, default, when = "train", requires = NULL, tunable = TRUE, special.vals = list() )
id | ( |
---|---|
lower | ( |
upper | ( |
allow.inf | ( |
default | (any concrete value | |
when | ( |
requires | ( |
tunable | ( |
special.vals | ( |
len | ( |
values | ( |
LearnerParam()
.